A Distributed Model for Multiple Viewpoint Melodic Prediction

Srikanth Cherla^{1,2}, Tillman Weyde^{1,2}, Artur Garcez², Marcus Pearce³

¹Music Informatics Research Group, City University London ²Machine Learning Group, City University London ³Centre for Digital Music, Queen Mary University of London

November 4, 2013

1/21

Background: Probabilistic modelling of melodic sequences

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

2/21

Approach: Modelling melodic sequences with RBMs

Results: Encouraging Prediction Performance

Background: Probabilistic modelling of melodic sequences

イロト イロト イヨト イヨト 三日

3/21

Approach: Modelling melodic sequences with RBMs

Results: Encouraging Prediction Performance

Sequential Information in Notated Music

- A wealth of information in notated music.
- Increasingly available
 - ▶ in different formats (MIDI, Kern, GP4, etc.).
 - ▶ for different kinds of music (classical, rock, pop, etc.)
- ▶ Analysis of sequences key to extracting information.
- ▶ Melody Good starting point for a broader analysis.

Relevance

Scientific:

- Computational musicology
- Organizing music data
- ▶ Generating musical stimuli
- ▶ Aiding acoustic models
- Music education

Creative:

▶ Automatic music generation

イロト イロト イヨト イヨト 三日

5/21

▶ Compositional assistance

Background: Probabilistic modelling of melodic sequences

Approach: Modelling melodic sequences with RBMs

Results: Encouraging Prediction Performance

Information Dynamics of Music (IDyOM)

- Predictive models of musical structure using probabilistic learning (Pearce & Wiggins, 2004).
- Develop insights into the analysis of musical structure drawing on research in musicology (Whorley et al., 2013).
- Relate predictions to psychological and neural processing of music (Omigie et al., 2013).

Website: www.idyom.org

Multiple Viewpoint Systems for Music Prediction (Conklin & Witten, 1995)

- ▶ Framework for analysis of symbolic music data.
- *Viewpoint type* (feature) sequences extracted from score.
- One Markov model per type.
- Mixture/product-of-experts to combine multiple models.

0								
7 5			_			-		
				F	5	_		
J	-			4	<u> </u>	•	 -	

Viewpoint	Transformed sequence									
pitch	67	69	71	72	69	72	64	67	72	69
int	\perp	2	2	1	-3	3	$^{-8}$	3	5	-3
onset	0	2	5	6	9	10	12	15	16	20
ioi	\perp	2	3	1	3	1	2	3	1	4
$int\otimesioi$	\perp	2, 2	2, 3	1, 1	-3, 3	3, 1	-8, 2	3, 3	5, 1	-3, 4

(Image Courtesy:Darrell Conklin)

8/21

3

At present...

- 1. A more scalable way to *link* viewpoint types.
- 2. An alternative approach to one relying directly on occurrence statistics.

In the future...

▶ Interest in knowledge extraction from neural networks.

Background: Probabilistic modelling of melodic sequences

Approach: Modelling melodic sequences with RBMs

Results: Encouraging Prediction Performance

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで 10/21

- Demonstrate the use of multiple-viewpoint systems with a distributed model - Restricted Boltzmann Machine.
- ► Compare the predictive performance of this model with the originally used Markov models on a melody corpus.

Restricted Boltzmann Machine (Smolensky, 1986)

- ▶ A bipartite network with binary stochastic units.
- ▶ Data in visible layer, features in hidden layer.
- ▶ Can model
 - joint distribution $p(v_1, \ldots, v_r)$
 - conditional distribution $p(v_1, \ldots, v_c | v_{c+1} \ldots, v_r)$
- ▶ Can be stacked into a deep network and trained efficiently.

A Distributed Melodic Prediction Model

- ▶ Viewpoint subsequence $s_{(t-n+1)...t}$ in visible layer.
- Models the conditional distribution $p(s_t|s_{(t-n+1)\dots(t-1)})$.
- Generalized softmax visible units.
- ▶ Viewpoint types linked by vector-concatenation.
- ▶ Trained generatively using Contrastive Divergence.

Background: Probabilistic modelling of melodic sequences

イロト イロト イヨト イヨト 三日

14/21

Approach: Modelling melodic sequences with RBMs

Results: Encouraging Prediction Performance

Predicting the next *pitch* with

- 1. a model that uses context of type *pitch*.
- 2. a model that uses context of type $pitch \otimes dur$.
- 3. a simple mixture-of-experts combination of 1 and 2.

Evaluation Setup

Corpus

- ▶ As used in Pearce et al., 2004.
- ▶ Subset of the Essen Folk Song Collection.
- ▶ A collection of 8 datasets of chorale and folk melodies.
- ▶ A total of 54, 308 musical events.

Evaluated models

- Context length $\in \{1, 2, 3, 4, 5, 6, 7, 8\}$
- Hidden units $\in \{100, 200, 400\}$
- Learning rate $\in \{0.01, 0.05\}$

Evaluation criterion — cross-entropy (to be minimized)

$$H_c(p_{mod}, \mathcal{D}_{test}) = \frac{-\sum_{s_1^n \in \mathcal{D}_{test}} \log_2 p_{mod}(s_n | s_1^{(n-1)})}{|\mathcal{D}_{test}|}$$

Changing Context Length

- Dataset: Folk melodies of Nova-Scotia, Alsace, Yugoslavia, Switzerland, Austria, Germany; Chorale melodies
- ▶ Input: *pitch*, Target: *pitch*

Model Performance

Combining "Multiple Viewpoints"

Dataset: 185 chorale melodies

▶ Input: *pitch*, Target: *pitch*

$context \ length$	1	2	3	4
IDyOM	2.737	2.565	2.505	2.473
RBM	2.698	2.530	2.490	2.470

▶ Input: $pitch \otimes duration$, Target: pitch

context-length	1	2	3	4
IDyOM	2.761	2.562	2.522	2.502
RBM	2.660	2.512	2.481	2.519

▶ Input: $pitch \oplus (pitch \otimes duration)$, Target: pitch

context length	1	2	3	4
$RBM \ (combined)$	2.663	2.486	2.462	2.413

Conclusions & Future Work

We presented the following

- ► A distributed model for multiple-viewpoint melodic prediction using Restricted Boltzmann Machines.
- ▶ Improved prediction results in comparison to previously evaluated Markov models.

Some interesting directions for future work

- ▶ Deeper networks.
- ▶ Musical interpretation of hidden layers.
- ▶ A distributed Short-Term Model.
- ▶ Polyphonic music.
- ▶ Interesting MIR applications.

We would like to thank

Darrell Conklin (Universidad del País Vasco) Son Tran (City University London)

Questions?

