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Introduction: Analysing sequences in symbolic music data



Sequential Information in Notated Music

A wealth of information in notated music.

v

v

Increasingly available

» in different formats (MIDI, Kern, GP4, etc.).
» for different kinds of music (classical, rock, pop, etc.)

v

Analysis of sequences key to extracting information.

v

Melody — Good starting point for a broader analysis.



Relevance

Scientific:
» Computational musicology

» Organizing music data

v

Generating musical stimuli

v

Aiding acoustic models
» Music education
Creative:
» Automatic music generation

» Compositional assistance
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Background: Probabilistic modelling of melodic sequences



Information Dynamics of Music (IDyOM)

» Predictive models of musical structure using
probabilistic learning (Pearce & Wiggins, 2004).

» Develop insights into the analysis of musical structure
drawing on research in musicology (Whorley et al., 2013).

» Relate predictions to psychological and neural processing of
music (Omigie et al., 2013).

Melodies Models Pitch distributions
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Multiple Viewpoint Systems for Music Prediction
(Conklin & Witten, 1995)

v

v

v

v

Framework for analysis of symbolic music data.

Viewpoint type (feature) sequences extracted from score.

One Markov model per type.

Mixture/product-of-experts to combine multiple models.
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Motivating a Distributed Model

At present...
1. A more scalable way to link viewpoint types.

2. An alternative approach to one relying directly on
occurrence statistics.

In the future...

» Interest in knowledge extraction from neural networks.
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Approach: Modelling melodic sequences with RBMs



Goals

» Demonstrate the use of multiple-viewpoint systems with a
distributed model - Restricted Boltzmann Machine.

» Compare the predictive performance of this model with the
originally used Markov models on a melody corpus.



Restricted Boltzmann Machine (Smolensky, 1986)

v

A bipartite network with binary stochastic units.

» Data in visible layer, features in hidden layer.
» Can model
» joint distribution p(vy,...,v,)
» conditional distribution p(v1,...,vc|Vet1 ..., 0y)
» Can be stacked into a deep network and trained efficiently.




A Distributed Melodic Prediction Model
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v

Viewpoint subsequence s(;_,1)..+ in visible layer.

v

Models the conditional distribution p(s¢|s—n+1)...t—1))-

Generalized softmax visible units.

v

v

Viewpoint types linked by vector-concatenation.

v

Trained generatively using Contrastive Divergence.
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Results: Encouraging Prediction Performance



Evaluation Tasks

Predicting the next pitch with
1. a model that uses context of type pitch.
2. a model that uses context of type pitch ® dur.

3. a simple mixture-of-experts combination of 1 and 2.



Evaluation Setup

Corpus
> As used in Pearce et al., 2004.
» Subset of the Essen Folk Song Collection.

» A collection of 8 datasets of chorale and folk melodies.

» A total of 54,308 musical events.
Evaluated models

» Context length € {1,2,3,4,5,6,7, 8}

» Hidden units € {100, 200,400}

» Learning rate € {0.01,0.05}

Evaluation criterion — cross-entropy (to be minimized)
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Changing Context Length

» Dataset: Folk melodies of Nova-Scotia, Alsace, Yugoslavia,
Switzerland, Austria, Germany; Chorale melodies

» Input: pitch, Target: pitch

Cross—entropy

Model Performance
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Combining “Multiple Viewpoints”

Dataset: 185 chorale melodies

» Input: pitch, Target: pitch

context length 1 2 3 4
1DyOM 2.737 | 2.565 | 2.505 | 2.473
RBM 2.698 | 2.530 | 2.490 | 2.470
» Input: pitch ® duration, Target: pitch
context-length 1 2 3 4
1DyOM 2.761 | 2.562 | 2.522 | 2.502
RBM 2.660 | 2.512 | 2.481 | 2.519

» Input: pitch @ (pitch ® duration), Target: pitch

context length

1

2

3

4

RBM (combined)

2.663

2.486

2.462

2.413




Conclusions & Future Work

We presented the following

» A distributed model for multiple-viewpoint melodic
prediction using Restricted Boltzmann Machines.

» Improved prediction results in comparison to previously
evaluated Markov models.

Some interesting directions for future work

» Deeper networks.

v

Musical interpretation of hidden layers.
A distributed Short-Term Model.

Polyphonic music.

v

v

v

Interesting MIR applications.
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Thank you!

Questions?
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