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Sequential Information in Notated Music

◮ A wealth of information in notated music.

◮ Increasingly available
◮ in different formats (MIDI, Kern, GP4, etc.).
◮ for different kinds of music (classical, rock, pop, etc.)

◮ Analysis of sequences key to extracting information.

◮ Melody — Good starting point for a broader analysis.
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Relevance

Scientific:

◮ Computational musicology

◮ Organizing music data

◮ Generating musical stimuli

◮ Aiding acoustic models

◮ Music education

Creative:

◮ Automatic music generation

◮ Compositional assistance
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Information Dynamics of Music (IDyOM)

◮ Predictive models of musical structure using

probabilistic learning (Pearce & Wiggins, 2004).

◮ Develop insights into the analysis of musical structure
drawing on research in musicology (Whorley et al., 2013).

◮ Relate predictions to psychological and neural processing of
music (Omigie et al., 2013).

Website: www.idyom.org
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Multiple Viewpoint Systems for Music Prediction
(Conklin & Witten, 1995)

◮ Framework for analysis of symbolic music data.

◮ Viewpoint type (feature) sequences extracted from score.

◮ One Markov model per type.

◮ Mixture/product-of-experts to combine multiple models.

(Image Courtesy:Darrell Conklin)
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Motivating a Distributed Model

At present...

1. A more scalable way to link viewpoint types.

2. An alternative approach to one relying directly on
occurrence statistics.

In the future...

◮ Interest in knowledge extraction from neural networks.
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Goals

◮ Demonstrate the use of multiple-viewpoint systems with a
distributed model - Restricted Boltzmann Machine.

◮ Compare the predictive performance of this model with the
originally used Markov models on a melody corpus.
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Restricted Boltzmann Machine (Smolensky, 1986)

◮ A bipartite network with binary stochastic units.

◮ Data in visible layer, features in hidden layer.

◮ Can model
◮ joint distribution p(v1, . . . , vr)
◮ conditional distribution p(v1, . . . , vc|vc+1 . . . , vr)

◮ Can be stacked into a deep network and trained efficiently.

h1
. . . hq h

v1 v2 v3 . . . vr v
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12 / 21



A Distributed Melodic Prediction Model

. . . h

. . . . . . . . . . . . . . . . . . . . . . . . v

s(t−n+1) s(t−n+2) . . . s(t−1) s(t)

(Input type) (Target type)

W

◮ Viewpoint subsequence s(t−n+1)...t in visible layer.

◮ Models the conditional distribution p(st|s(t−n+1)...(t−1)).

◮ Generalized softmax visible units.

◮ Viewpoint types linked by vector-concatenation.

◮ Trained generatively using Contrastive Divergence.
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Evaluation Tasks

Predicting the next pitch with

1. a model that uses context of type pitch.

2. a model that uses context of type pitch⊗ dur.

3. a simple mixture-of-experts combination of 1 and 2.
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Evaluation Setup

Corpus

◮ As used in Pearce et al., 2004.

◮ Subset of the Essen Folk Song Collection.

◮ A collection of 8 datasets of chorale and folk melodies.

◮ A total of 54, 308 musical events.

Evaluated models

◮ Context length ∈ {1, 2, 3, 4, 5, 6, 7, 8}

◮ Hidden units ∈ {100, 200, 400}

◮ Learning rate ∈ {0.01, 0.05}

Evaluation criterion — cross-entropy (to be minimized)

Hc(pmod,Dtest) =
−

∑
sn1 ∈Dtest

log2 pmod(sn|s
(n−1)
1 )

|Dtest|
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Changing Context Length

◮ Dataset: Folk melodies of Nova-Scotia, Alsace, Yugoslavia,
Switzerland, Austria, Germany; Chorale melodies

◮ Input: pitch, Target: pitch

Model Performance
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Combining “Multiple Viewpoints”

Dataset: 185 chorale melodies

◮ Input: pitch, Target: pitch

context length 1 2 3 4

IDyOM 2.737 2.565 2.505 2.473

RBM 2.698 2.530 2.490 2.470

◮ Input: pitch⊗ duration, Target: pitch

context-length 1 2 3 4

IDyOM 2.761 2.562 2.522 2.502

RBM 2.660 2.512 2.481 2.519

◮ Input: pitch⊕ (pitch⊗ duration), Target: pitch

context length 1 2 3 4

RBM (combined) 2.663 2.486 2.462 2.413
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Conclusions & Future Work

We presented the following

◮ A distributed model for multiple-viewpoint melodic
prediction using Restricted Boltzmann Machines.

◮ Improved prediction results in comparison to previously
evaluated Markov models.

Some interesting directions for future work

◮ Deeper networks.

◮ Musical interpretation of hidden layers.

◮ A distributed Short-Term Model.

◮ Polyphonic music.

◮ Interesting MIR applications.
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Thank you!

Questions?
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