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Statistical Language Modelling

◮ Modelling sequences of words in text.

◮ Understanding properties of language through documents.

◮ Applied in speech recognition, document analysis &
classification.

4 / 19



Music Prediction

◮ Modelling sequences of musical events (musical pitch, note
duration, etc.).

◮ Understanding properties of music through scores.
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Relevance

Scientific:

◮ Analysis of
◮ Compositional practices
◮ Musical style

◮ Music Education & Training

◮ Organizing music data

◮ Aiding music transcription

◮ Music & emotion

Creative:

◮ Generative music

◮ Compositional assistance
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Notable Approaches

◮ Markov models to carry out a “musical conversation”.

◮ Rule-based systems to imitate classical composers.

◮ Neural networks to play like Charlie Parker.

◮ Genetic Algorithms to improvise Jazz solos.

◮ Hidden Markov models to harmonize chorales like Bach.
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Restricted Boltzmann Machine

◮ A bipartite graphical model for learning probability
distributions

◮ Adjusts weights according to data while learning.

◮ Data presented at visible layer. Features learned in hidden
layer.

◮ Generative model.
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Why RBMs?

RBMs have some desirable qualities for learning from music
data

◮ Reasonable predictions for unseen cases.

◮ Non-exponential scaling with sequence length.

◮ Efficient learning algorithms.

◮ Scalable to deeper architectures.

◮ Generative properties.
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Neural Probabilistic Music Prediction

A simple model based on the Restricted Boltzmann Machine for
learning sequences of musical pitch.
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The present approach motivated by previous work in language
modelling.
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Sequence Length

Makes use of information in longer pitch sequences.
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Prediction Performance

Better cross entropy estimates.

ID Markov-3 Markov* RBM-2 RBM-3 RBM-4 RBM-5 RBM-6 RBM-7 RBM-8 RBM-9

0 2.885 2.861 3.062 2.895 2.812 2.787 2.783 2.770 2.772 2.793
1 2.544 2.444 2.732 2.554 2.510 2.465 2.442 2.442 2.455 2.465
2 3.110 3.115 3.174 3.030 2.935 2.894 2.852 2.865 2.848 2.849
3 2.791 2.721 2.886 2.738 2.666 2.672 2.641 2.703 2.741 2.802
4 3.192 3.010 3.202 3.069 2.974 2.867 2.822 2.826 2.838 2.829
5 3.385 3.340 3.475 3.286 3.203 3.140 3.107 3.117 3.026 3.070
6 2.596 2.428 2.740 2.597 2.519 2.461 2.432 2.411 2.379 2.383
7 3.083 3.105 3.196 2.980 2.899 2.878 2.815 2.812 2.817 2.817

Av. 2.948 2.878 3.059 2.894 2.815 2.771 2.737 2.743 2.734 2.751
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Case Study:Folk Melody Classification

Overall accuracy of 59.93%
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Nova-Scotia 74.83% 5.96% 0.00% 2.65% 4.63% 4.63% 7.28%

Alsace 13.19% 29.67% 7.69% 10.99% 19.78% 16.48% 2.19%

Yugoslavia 10.08% 10.08% 42.02% 14.29% 14.29% 8.40% 0.84%

Switzerland 6.45% 17.20% 6.45% 35.48% 22.58% 7.53% 4.30%

Austria 10.58% 19.23% 4.81% 12.50% 41.35% 9.62% 1.92%

Germany 11.27% 11.74% 2.35% 9.86% 8.92% 53.99% 1.88%

China 6.75% 1.27% 0.00% 0.84% 3.80% 0.00% 87.34%
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Conclusions & Future Work

Conclusion

◮ RBMs are a good starting point for music prediction.
◮ Use longer contexts.
◮ Handle unseen contexts.
◮ Scale gracefully.

Some interesting directions for future work

◮ Extensions to harmonic sequences.

◮ Predicting other musical dimensions.

◮ Learning higher-level structure.

◮ Other applications.
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Thank you!

Questions?
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