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Statistical Language Modelling
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» Modelling sequences of words in text.
» Understanding properties of language through documents.

» Applied in speech recognition, document analysis &
classification.

4/19



Music Prediction

» Modelling sequences of musical events (musical pitch, note
duration, etc.).

» Understanding properties of music through scores.
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Relevance

Scientific:
» Analysis of

» Compositional practices
» Musical style

v

Music Education & Training

» Organizing music data

v

Aiding music transcription

Music & emotion

v

Creative:
» Generative music

» Compositional assistance
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Notable Approaches

v

Markov models to carry out a “musical conversation”.

v

Rule-based systems to imitate classical composers.

v

Neural networks to play like Charlie Parker.

v

Genetic Algorithms to improvise Jazz solos.

Hidden Markov models to harmonize chorales like Bach.

v
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Restricted Boltzmann Machine

v

A bipartite graphical model for learning probability
distributions

v

Adjusts weights according to data while learning.

v

Data presented at visible layer. Features learned in hidden
layer.

v

Generative model.
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Why RBMs?

RBMs have some desirable qualities for learning from music
data

» Reasonable predictions for unseen cases.

» Non-exponential scaling with sequence length.

v

Efficient learning algorithms.

v

Scalable to deeper architectures.

v

Generative properties.



Neural Probabilistic Music Prediction

A simple model based on the Restricted Boltzmann Machine for
learning sequences of musical pitch.
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The present approach motivated by previous work in language
modelling.
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Sequence Length

Makes use of information in longer pitch sequences.

Average Cross Entropy
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Prediction Performance

Better cross entropy estimates.

ID Markov-3 Markov¥ RBM-2 RBM-3 RBM-4 RBM-5 RBM-6 RBM-7 RBM-8 RBM-9
0 2.885 2.861 3.062 2.895 2.812 2.787 2.783 2.770 2.772 2.793
1 2.544 2.444 2.732 2.554 2.510 2.465 2.442 2.442 2.455 2.465
2 3.110 3.115 3.174 3.030 2.935 2.894 2.852 2.865 2.848 2.849
3 2.791 2.721 2.886 2.738 2.666 2.672 2.641 2.703 2.741 2.802
4 3.192 3.010 3.202 3.069 2.974 2.867 2.822 2.826 2.838 2.829
5 3.385 3.340 3.475 3.286 3.203 3.140 3.107 3.117 3.026 3.070
6 2.596 2.428 2.740 2.597 2.519 2.461 2.432 2.411 2.379 2.383
7 3.083 3.105 3.196 2.980 2.899 2.878 2.815 2.812 2.817 2.817

Av. 2.948 2.878 3.059 2.894 2.815 2.771 2.737 2.743 2.734 2.751

5/19



Case Study:Folk Melody Classification

Overall accuracy of 59.93%
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Conclusions & Future Work

Conclusion
» RBMs are a good starting point for music prediction.

» Use longer contexts.
» Handle unseen contexts.
» Scale gracefully.

Some interesting directions for future work

v

Extensions to harmonic sequences.

v

Predicting other musical dimensions.

v

Learning higher-level structure.

v

Other applications.
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Thank you!

Questions?
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