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Abstract. We present an approach for modelling melodic sequences us-
ing Restricted Boltzmann Machines, with an application to folk melody
classification. 1Results show that this model’s predictive performance is
slightly better in our experiment than that of previously evaluated n-
gram models [7]. The model has a simple structure and in our evaluation
it scaled linearly in the number of free parameters with length of the
modelled context. A set of these models is used to classify 7 different
styles of folk melodies with an accuracy of 61.74%.
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1 Introduction

We are interested in modelling melodic sequences with machine learning. Musical
pitch serves as a starting point for building models for more comprehensive
analysis of sequential structure in music that include other musical features and
polyphonic structures. The challenge here lies in effectively generalising over the
large number of variations that are possible in sequences of individual musical
features and in their interactions, given their limited number of occurrences in
data. Although Markov models have been widely used for modelling sequences in
music [4,7], they are often faced with a problem related to data sparsity, known
as curse of dimensionality. This refers to the exponential rise in the number of
model parameters with the length of the modelled sequences. Neural Networks
are increasingly being considered as scalable alternatives to Markov models for
sequence learning in both music and language [1, 2, 9].

In this paper, we present an approach using the Restricted Boltzmann Ma-
chine (RBM) [5] for learning sequences of musical pitch. We demonstrate that
the predictive performance of this model improves with context length up to
7 notes and the number of model parameters increases linearly in the process.
The model in our experiment performs slightly better than previously evaluated
n-gram models on a dataset of J.S. Bach chorale melodies. As an example ap-
plication, we use a set of these models to classify 7 classes of folk melodies with
an accuracy of 61.74%.
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2 Restricted Boltzmann Machine

The Restricted Boltzmann Machine (RBM) is an undirected graphical model
consisting of a set of visible units v and a set of hidden units h, with connections
only between units belonging to different sets. In its original form, the RBM has
binary, logistic units in both layers. It is an energy-based model in which the
joint probability over the observed and latent variables is given by

p(v,h) =
e−Energy(v,h)

Z
(1)

where Z is a normalization factor determined by the partition function [5]. The
energy function of the RBM is given by Energy(v,h) = −b⊤v− c⊤h−h⊤Wv,
where v and h are activation vectors, and b and c are bias vectors for the vis-
ible and hidden units, respectively. The matrix W represents the connection
weights between the hidden and visible units. Learning a sequence of symbols
in the visible layer of the RBM amounts to maximizing the log-likelihood of the
joint distribution p(v). While computing the exact gradient of the log-likelihood
function for p(v) is not tractable, an approximation of this gradient called Con-
trastive Divergence (CD) gradient has been found to work well in practice [5].

3 The Prediction Model

We employ the RBM trained generatively with CD, as demonstrated in [6] to
model the distribution p(st|s(t−n+1)...(t−1)), where st is the tth element in a
sequence s1...t of MIDI pitch values. The visible layer of the network contains
(n − 1) sets of binary one-of-(m + 1) softmax units (the context) and another
similar set of m softmax units (the prediction), where n is the length of the
learned subsequence and m the size of the alphabet. The additional unit in each
set of context units handles the absence of a context at the start of a melody. The
model is illustrated in Figure 1. The model is trained generatively using the first
instantiation of Contrastive Divergence learning (CD1) [5]. Given an incomplete
sequence in the first (n − 1) × (m + 1) visible units, it predicts a probability
distribution over the pitch values in the remaining m visible units [6].

4 Evaluation

We carried out a two-fold evaluation. In the first, we compared the average
cross-entropies of the RBM models of different subsequence lengths on a dataset
of 185 chorale melodies with those of corresponding n-gram models previously
evaluated on the same dataset. The present model was compared with the Long-
term Model evaluated there. The same cross-validation folds were used as in [7].
Table 1 shows that the predictive performance of the RBM model is slightly
better than that of n-gram models1 for most context lengths and when choosing

1 The n-gram cross-entropies in Table 1 were provided by Dr. Marcus Pearce.
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Fig. 1. The structure of the prediction model. Each set of nodes sτ in the visible layer
is the binary one-of-m representation of a pitch value. The sets grouped together to the
left make up the context s(t−n+1)...(t−1) of length (n−1), and contain (n−1)× (m+1)
nodes. The set of m nodes to the far right corresponds to the pitch s(t) to be predicted.

n 2 3 4 5 6 7 8 9 ∞

n-gram 2.737 2.565 2.505 2.473 2.460 2.457 2.455 2.451 2.446
RBM 2.698 2.530 2.490 2.470 2.454 2.433 2.536 2.486 N/A

(0.100) (0.112) (0.134) (0.125) (0.129) (0.127) (0.134) (0.135) N/A

Table 1. Comparison between n-gram and RBM models over a range of orders n, on
the chorale melody dataset. The last column corresponds to unbounded order, which is
not applicable to RBMs. The second and third rows are the means and corresponding
standard deviations of cross-entropy across folds respectively for the RBM.

the best overall model. The performance progressively improves until a sequence
length of 7. In a grid search over [100, 200, 400], 100 hidden units was found to
be the best choice overall, leading to linear model growth in this evaluation.

In the second evaluation, a set of prediction models was employed as a one-
vs-all classifier in the classification of 7 different folk-melody styles [3] from the
Essen Folk Song Collection [8]. We refer the reader to [7] for details of the subset
of this collection used here. With one model trained on pitch sequences from each
class, a given test melody was assigned to the class whose model returned the
lowest average cross-entropy value over that melody. Each of the models was
trained on sequences of length 6. The extra visible unit for a missing context is
not used here and the first 5 notes of a melody are ignored. The results are shown
in Table 2. The overall classification accuracy is 61.74%. There is a relatively high
degree of confusion between classes corresponding to geographically close regions
of Europe (Alsace, Yugoslavia, Switzerland, Austria, Germany), suggesting the
need to further optimize the models, or add more musical features.

5 Conclusions & Future Work

In this paper, we presented a neural probabilistic model for modelling fixed-
length musical pitch sequences in monophonic melodies. It was demonstrated
that the model performs slightly better than corresponding n-gram models in
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Nova-Scotia 117 6 2 2 2 13 10 152

Alsace 8 33 11 7 15 15 2 91

Yugoslavia 15 14 54 9 17 7 3 119

Switzerland 6 9 10 33 22 11 2 93

Austria 5 16 10 14 41 14 4 104

Germany 14 23 10 15 14 132 5 213

China 11 3 2 2 5 1 213 237

Fig. 2. Confusion Matrix with results of the folk melody classification task.

most cases. Moreover, the results indicate linear growth with the sequence length
n in the presented set-up. While this basic model has been successful at mod-
elling musical pitch sequences, it is to be seen whether the introduction of other
musical features like note durations, intervals, etc. would lead to improved pre-
dictions. The statistical significance of the improvements observed here is to be
determined. Extension of the present model to polyphonic music, and an analysis
of the features learned by the model in its hidden units [9], is also of interest.
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