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1. Introduction

• Modelling statistical regularities in melodies.
• A note based approach - Multiple Viewpoint Systems.
• Predict a probability distribution over possible values of
pitch of next note given the notes immediately preceding
it: p(st|s(1,...,t−1)).

• Applications: Music generation, studying melodic
expectation, solo instrument/singing voice transcription.

3. Prediction Models

• Two non-recurrent neural network prediction models.
• Context events in one-hot representation given as input.
• Multiple input type one-hot vectors concatenated.
• Networks have softmax output layer to predict p(y|x).
• The feedforward neural network has a single logistic
sigmoid hidden layer.

• The neural probabilistic melody model [2] has a
hyperbolic tangent hidden layer and an additional linear
embedding layer.

• Both networks trained using the backpropagation and
mini-batch gradient descent [3].
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2. Multiple Viewpoints Representation of Melody

• A framework for analysis and generation of music in symbolic form (MIDI, Kern, etc.) [1].
• Melody broken down into parallel viewpoint type sequences.
• Viewpoint types can be linked via Cartesian product.
• One n-gram model per viewpoint type to overcome data sparsity.
• Multiple models combined using entropy-weighted mixture- or product-of-experts.
• Input types: Types in the context; Target type: Type being predicted.

4. Experiments & Evaluation

• Dataset: Bach chorales (9, 227 notes), and Folk melodies of Canada (8, 553 notes), China (11, 056 notes) and
Germany (8, 393 notes) from the Essen Folk Song Collection [6].

• Criterion: Cross Entropy - A measure of the divergence between model predictions and the true data distribution.
• Methodology: Model selection through grid search, with each model evaluated on folds identical to those in [4].
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Experiments
• Predict pitch, given a context of. . .

• pitch.
• pitch, inter-onset interval, scale-degree.

• Multiple viewpoint types combined via. . .
• a single model.
• a combination of multiple models.

• Compared with previous n-gram and restricted
Boltzmann machine prediction models [4, 5].

Observations
• Predictions improve with context length.
• The respective best cases of both neural network
models better than n-grams but worse than RBMs.

• Additional viewpoint types (in the present case)
improve predictions.

• A combination of multiple models better than a
single model particularly for longer contexts.

• Both MoE and PoE model combinations improve
predictions. PoE only slightly better in some cases.

5. Future Work

• Neural network “tricks” and better optimization to improve existing results.
• Recurrent models to limit increase in the input space with context length.
• Online learning to update model parameters while it predicts unseen sequences.
• Application to melody segmentation, voice separation and singing-voice transcription.
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