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Sequential Information in Music

◮ A wealth of information in notated music.

◮ Increasingly availabile
◮ In different formats (MIDI, Kern, GP4, etc).
◮ For different kinds of music (classical, rock, pop, etc.)

◮ Analysis of sequences key to extracting information.

◮ Melody — Good starting point for a broader analysis.
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Relevance

Scientific:

◮ Analysing
◮ Compositional practices
◮ Musical style & structure

◮ Music education

◮ Organizing music data

◮ Musical expectation

Creative:

◮ Music generation

◮ Compositional assistance
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Context

Music & Information Theory

◮ Multiple-viewpoint
Systems (Conklin &
Witten, 1995)

◮ Statistical modelling of
melodies (Pearce &
Wiggins, 2004)

◮ Folk Melody classification
(Conklin, 2013)

Neural Networks

◮ Neural Language Models
(Bengio et al., 2003)

◮ RBM-provisor (Bickerman
et al., 2010)

◮ TC-RBM (Spiliopoulou &
Storkey, 2011)
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Motivation

◮ Multiple-viewpoint systems — comprehensive & thorough
framework for music analysis.

◮ Recent success of deep neural networks in natural language
processing & computer vision.

◮ Neural networks may be a viable alternative to n-gram
models for music analysis within this framework.
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Overview of Approach

In this research, the following are explored

◮ An event-based representation of musical sequences.

◮ An alternative to Markov models to learn these sequences.

◮ Two-fold evaluation

1. Cross-entropy comparison
2. Folk melody classification
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Restricted Boltzmann Machine

◮ A bipartite graphical model with binary stochastic units.

◮ Can be trained to model p(v) using Contrastive Divergence
learning algorithm.

◮ Data in visible layer, features in hidden layer.

◮ Is readily scalable to deeper network architectures.
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Neural Probabilistic Music Prediction
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◮ Consists of softmax visible units.

◮ Pitch subsequence s(t−τ+1)...t in visible layer.

◮ RBM trained generatively, tested discriminatively
(Larochelle & Bengio, 2008).

◮ Models the conditional distribution p(st|s(t−τ+1)...(t−1))

◮ Absence of event represented with an additional node.
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Cross Entropy Comparison

◮ Dataset: 185 chorale melodies from the Essen Folk Song
Collection (EFSC) (Schaffrath & Huron, 1995).

◮ Same data folds as (Pearce & Wiggins, 2004)

◮ Training hyperparameters
◮ nhid ∈ {100, 200, 400}
◮ η ∈ {0.01, 0.05}
◮ wcost ∈ {0.0001, 0.0005}
◮ µini = 0.5, µfin = 0.9

◮ Slightly better cross entropy estimates over a range of
subsequence lengths.

n 2 3 4 5 6 7 8 9 ∞

n-gram 2.737 2.565 2.505 2.473 2.460 2.457 2.455 2.451 2.446
RBM 2.698 2.530 2.490 2.470 2.454 2.433 2.536 2.486 N/A

(0.100) (0.112) (0.134) (0.125) (0.129) (0.127) (0.134) (0.135) N/A
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Folk Melody Classification

◮ Dataset: A set of folk melody collections of 7 different
origins from the EFSC.

◮ Overall accuracy of 61.74%.
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Nova-Scotia 117 6 2 2 2 13 10 0.770 152

Alsace 8 33 11 7 15 15 2 0.363 91

Yugoslavia 15 14 54 9 17 7 3 0.454 119

Switzerland 6 9 10 33 22 11 2 0.355 93

Austria 5 16 10 14 41 14 4 0.394 104

Germany 14 23 10 15 14 132 5 0.620 213

China 11 3 2 2 5 1 213 0.899 237

Precision 0.665 0.317 0.545 0.402 0.402 0.684 0.891
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Conclusions & Future Work

We demonstrated the following

◮ A distributed model for melodic prediction.

◮ Application of the model to folk melody classification.

Some interesting directions for future work

◮ Extensions to harmonic sequences.

◮ Predicting other musical dimensions.

◮ Learning higher-level structure.

◮ Improving predictions.

◮ Interesting applications.

More details of the model available in (Cherla et al., 2013).
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Thank you!

Questions?
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