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Sequences in Notated Music

• A wealth of information in notated music

• Increasingly available
• in different formats (MIDI, Kern, GP4, etc.)
• for different kinds of music (classical, rock, pop, etc.)

• Analysis of sequences key to extracting information

• Melody — Good starting point for a broader analysis
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Relevance

Scientific:

• Computational musicology

• Organizing music data

• Aiding acoustic models

• Music education

Creative:

• Automatic music generation

• Compositional assistance
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Task: Melody Prediction

• Model a series of musical events sT1 as follows

p
(
sT1
)

=

T∏
t=1

p
(
st|s(t−1)(t−n+1)

)
• Conditional probabilities learned from a corpus

• Information theoretic measure - cross entropy, to
measure a trained model’s prediction uncertainty

H (p, pm) = −
T∑
t=1

p
(
wt|w(t−1)

(t−n+1)

)
log2 pm

(
wt|w(t−1)

(t−n+1)

)
• How well does a model pm approximate p?

• Cross entropy to be minimized
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Motivating Distributed Models

• Previous work focused on n-gram models

• No comparative results with other prediction models

• Thriving neural networks research (Bengio, 2009)

• Recent success of neural network language models (Bengio
2003; Collobert et al., 2011; Mikolov et al., 2010)

Start with an evaluation of connectionist models on the melody
prediction task
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Restricted Boltzmann Machine
(Smolensky, 1986)

• Generative, energy-based graphical model.
• Data v in visible layer, features h in hidden layer.
• Can model joint probability p(v) of data as

p(v) =
exp(−FreeEnergy(v))∑
v∗ exp(−FreeEnergy(v∗))

where, FreeEnergy(v) = − log(
∑

h exp(−Energy(v,h)))
• Learned using Contrastive Divergence (Hinton, 2002).

s(t−n+1:t)

h

v

W
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Discriminative RBM (Larochelle &
Bengio, 2008)

• Discriminative classifier based on the RBM.
• Data x and class-label y in visible layer.
• Can model the conditional probability p(y|x) as

p(y|x) =
exp(−FreeEnergy(x,y))∑
y∗ exp(−FreeEnergy(x,y∗))

• Exact gradient computation is possible.

s(t−n+1:t−1) s(t)

h

x y

V U
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Recurrent Temporal RBM (Sutskever et
al., 2009)

• Generative model for high-dimensional time-series.
• RBM at time t conditioned on ĥ(t−1)

• Models joint probability of a sequence as

p(v(1:T ),h(1:T )) =
∏
t

p(v(t)|h(t−1))p(h(t)|v(t),h(t−1))

• Learned using Contrastive Divergence and BPTT.

s(0:1) s(1:2)

h(0) h(1) h(2) . . .

v(1) v(2) . . .

Whh
c(1)

Whv

b(1)

Whh
c(2)

Whv

b(2)
W W
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Motivation

• Discriminative inference on generative RTRBM

• Possible to carry out discriminative learning

• Previous work suggested potential improvements
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Discriminative Learning in the
RTRBM (Cherla et al., 2015)

Extend DRBM learning to a recurrent model

p(y(t)|x(1:t)) = p(y(t)|x(t), ĥ(t−1))

=
exp(−FreeEnergy(x(t),y(t)))∑
y∗ exp(−FreeEnergy(x(t),y∗))

s(0) s(1) s(1) s(2)

h(0) h(1) h(2) . . .

x(1) y(1) x(2) y(2) . . .
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Discriminative Learning in the
RTRBM (Cherla et al., 2015)

Apply to an entire sequence to optimize the log-likelihood:

O = log p(y(1:T )|x(1:T ))

=

T∑
t=1

log p(y(t)|x(t), ĥ(t−1))
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Discriminative Learning in the
RTRBM (Cherla et al., 2015)

• Recurrent extension of the DRBM.

• Identical in structure to the RTRBM.

• Exact gradient of cost computable at each time-step.

• Back-Propagation Through Time for sequence learning.

s(0) s(1) s(1) s(2)
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Experiments: Melody Corpus
Corpus
• As used in (Pearce & Wiggins, 2004).
• A collection of 8 datasets.

• Folk songs from the Essen Folk Song Collection.
• Chorale melodies.

Dataset No. events |χ|

Yugoslavian folk songs 2691 25
Alsatian folk songs 4496 32

Swiss folk songs 4586 34
Austrian folk songs 5306 35
German folk songs 8393 27

Canadian folk songs 8553 25
Chorale melodies 9227 21
Chinese folk songs 11056 41
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Experiments: Melody Corpus

Models

• Non-recurrent: n-grams (b), n-grams (u), FNN, RBMs,
DRBMs with context length ∈ {1, 2, 3, 4, 5, 6, 7, 8}.

• Recurrent: RNN, RTRBM, RTDRBM over entire
sequences.

• Hidden units ∈ {25, 50, 100, 200}
• Learning rate ∈ {0.01, 0.05}
• Trained for 500 epochs.

• Best model determined over a validation set.

Evaluation criterion — cross-entropy

Hc(pmod,Dtest) =
−

∑
sn1∈Dtest

log2 pmod(sn|s
(n−1)
1 )

|Dtest|

18 / 47



Results
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In general, performance improves with context length.
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n-gram model performance worsens at lower context length.
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Non-recurrent connectionist models outperform n-grams.

21 / 47



Results

0 2 4 6 8

2.8

2.9

3

3.1

Context length

C
ro
ss

E
n
tr
o
p
y

n− gram(b)

FNN

DRBM

RBM

n− gram(u)

RNN

RTRBM

RTDRBM

Recurrent connectionist models outperform non-recurrent.
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With a shorter context: DRBM outperforms RBM.
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More details and discussion available in the paper.
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Motivation

s(0) s(1) s(1) s(2)
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ĥ(t−1) = σ(Wx(t−1) + Uy(t−1) + c(t−1))

= σ(Wx(t−1) + Uy(t−1) +Whhĥ
(t−2) + c)

Limitation: Dependence of h(t) on y∗(t−1) which is not suitable
for general sequence-labelling problems
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Motivation
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ĥ(t−1) = σ(Wx(t−1) + Uy(t−1) + c(t−1))

= σ(Wx(t−1) + Uy(t−1) +Whhĥ
(t−2) + c)

Solution: Replace y∗(t−1) (unavailable at test time) with
predicted output y(t−1) of previous time-step.
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Experiments: OCR
Dataset (Taskar et al., 2004)

• 6, 877 English sentences with 52, 152 words

• Each character a 16× 8 binary image

• ASCII code label for each image (26 categories)

• 10 cross-validation folds, one hold-out test set

Method

• Grid search over model hyperparameters

• 10-fold cross validation during model selection

• Models trained over entire sentences

Evaluation: Average Loss Per Sequence

E(y,y∗) =
1

N

N∑
i=1

 1

Li

Li∑
j=1

I
(

(yi)j 6= (y∗i )j

) (1)
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Experiments: OCR
Baseline Models (Nguyen & Guo, 2007)

• Multiclass Support Vector Machine (SVMmulticlass)

• Structured SVM (SVMstruct)

• Max-Margin Markov Network (M3N)

• Averaged Perceptron

• SEARN

• Conditional Random Field (CRF)

• Hidden Markov Model (HMM)

• Structured Learning Ensemble (SLE)

State-of-the-art

• Neural Conditional Random Fields (NCRF) (Do et al.,
2010)

• Gradient Boosted Conditional Random Fields (GBCRF)
(Chen et al., 2015)
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Results: Baseline

Model Error (%)

RTDRBM 15.95(±0.0009)
SLE 20.58
SVMstruct 21.16
HMM 23.70
M3N 25.08
Perceptron 26.40
SEARN 27.02

SVMmulticlass 28.54
CRF 32.30

Table: Comparison between the prediction error (%) of the RTDRBM
and models evaluated in (Nguyen & Guo, 2007).

32 / 47



Results: State-of-the-art

Model Error (%)

NCRF 4.44
GBCRF 4.64(±0.0027)
RTDRBM 15.95(±0.0009)

Table: Comparison between the prediction error (%) of the RTDRBM
and state-of-the-art on the OCR dataset which use Neural
Conditional Random Fields (NCRF) (Do et al., 2010) and Gradient
Boosted Conditional Random Fields (Chen et al., 2015).
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Motivation

h

x y

V U

• The DRBM is essentially the RBM.

• Various variants of the RBM have been proposed
• {−1,+1}-binary hidden unit activations.
• Integer valued hidden unit activations.
• Real-valued hidden unit activations.

• How might the same be achieved for the DRBM?
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Key Intuition

Generalise the expression for the DRBM conditional
distribution p(y|x) as a function of the values that its hidden
states can assume, then derive the conditional distribution as

per the desired values of its hidden states.
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Generalising the DRBM Conditional
Distribution (Cherla et al., 2017)

Begin with the expression for the conditional distribution

P (y|x) =

∑
h P (x,y,h)∑

y∗
∑

h P (x,y∗,h)

=

∑
h exp (−E (x,y,h))∑

y∗
∑

h exp (−E (x,y∗,h))

(2)

where y is the one-hot encoding of a class label y.
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Generalising the DRBM Conditional
Distribution (Cherla et al., 2017)

This can be generalised as follows (details in the paper):

P (y|x) =
exp (by)

∏
j

∑
k exp (sk

∑
i xiwij + uyj + cj)∑

y∗ exp (by∗)
∏

j

∑
k exp (sk

∑
i xiwij + uy∗j + cj)

(3)
where sk is each of the k states that can be assumed by each
hidden unit j of the model.
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(Re-)Deriving the DRBM (Cherla et al.,
2017)

The (Bernoulli) DRBM conditional distribution can be derived
when the states sk = {0, 1}.

Pber (y|x) =
exp (by)

∏
j

∑
sk∈{0,1} exp (skαj)∑

y∗ exp (by∗)
∏

j

∑
sk∈{0,1} exp

(
skα

∗
j

)
=

exp (by)
∏

j (1 + exp (αj))∑
y∗ exp (by∗)

∏
j

(
1 + exp

(
α∗j

)) (4)
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The Bipolar DRBM (Cherla et al., 2017)

The Bipolar DRBM conditional distribution can be derived
when the states sk = {−1,+1}.

Pbip (y|x) =
exp (by)

∏
j

∑
sk∈{−1,+1} exp (skαj)∑

y∗ exp (by∗)
∏

j

∑
sk∈{−1,+1} exp

(
skα

∗
j

)
=

exp (by)
∏

j (exp (−αj) + exp (αj))∑
y∗ exp (by∗)

∏
j

(
exp

(
−α∗j

)
+ exp

(
α∗j

)) .

(5)
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The Binomial DRBM (Cherla et al.,
2017)

The Binomial DRBM conditional distribution can be derived
when the states sk = {0, . . . , N}.

SN =

N∑
sk=0

exp (skαj)

= 1 + exp (αj)

(N−1)∑
sk=0

exp (skαj)

=
1− exp ((N + 1)αj)

1− exp (αj)

(6)
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Experiments: ML Benchmarks

• Datasets

1 MNIST digit classification.
2 USPS digit classification.
3 20 Newsgroups document classification.

• Grid search with each model evaluated over 10 seeded runs.

• The value of N (bins) in the Binomial DRBM varied as
{2, 4, 8}.

• Maximise log-likelihood on training and validation set.

• Report average classification error on test set
E(y,y∗) = 1

N

∑N
i=1 I (yi 6= y∗i ).
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Results: MNIST

Model Average Loss(%)

DRBM (nhid = 500, ηinit = 0.05) 1.78(±0.0012)
Bipolar DRBM (nhid = 500, ηinit = 0.01) 1.84(±0.0007)
Binomial DRBM (nhid = 500, ηinit = 0.01) 1.86(±0.0016)

Table: Results on the USPS dataset. The Binomial DRBM in this
table is the one with nbins = 2.

nbins nhid ηinit Average Loss (%)

2 500 0.01 1.86
4 500 0.01 1.88
8 500 0.001 1.90

Table: Performance of the Binomial DRBM with different values of
nbins. The difference was within the margin of significance.
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Results: USPS

Model Average Loss (%)

DRBM (n = 50, ηinit = 0.01) 6.90(±0.0047)
Bipolar DRBM (n = 500, ηinit = 0.01) 6.49(±0.0026)
Binomial DRBM (n = 1000, ηinit = 0.01) 6.09(±0.0014)

Table: Performance on the USPS dataset. The Binomial DRBM in
this table is the one with nbins = 8.

nbins ηinit nhid Average Loss (%)

2 0.01 50 6.90(±0.0047)
4 0.01 1000 6.48(±0.0018)
8 0.01 1000 6.09(±0.0014)

Table: Classification average losses of the Binomial DRBM with
different values of nbins.
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Results: 20 Newsgroups

Model Average Loss (%)

DRBM (n = 50, ηinit = 0.01) 28.52(±0.0049)
Bipolar DRBM (n = 50, ηinit = 0.001) 27.75(±0.0019)
Binomial DRBM (n = 100, ηinit = 0.001) 28.17(±0.0028)

Table: Performance on the 20 Newsgroups dataset. The Binomial
DRBM in this table is the one with nbins = 2.

nbins ηinit nhidden Average Loss (%)

2 0.001 100 28.17(±0.0028)
4 0.001 50 28.24(±0.0032)
8 0.0001 50 28.76(±0.0040)

Table: Classification performance of the Binomial DRBM with
different values of nbins.
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Thank you!

Questions?
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